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Abstract—It is suggested to treat kinetic data as time series. Mapping formulas in the form of a generalized
linear functional equation are derived for the most typical kinetic systems. These formulas are applicable to the

analysis of experimental kinetic data.

Much progress has been made in the development of
kinetic data analysis techniques aimed at the identifica-
tion of probable kinetic models and at the estimation of
model parameters such as rate constants and partial
reaction orders (see, e.g., [1-4]). Standard data analysis
methods include construction of linear anamorphoses
for kinetic curves, analysis of (initial) reaction rates,
and numerical integration of probable rate equations
with minimization of the sum of squared deviations of
calculated data from observed data. This report deals
with the application of mapping to the analysis of
kinetic data for a batch reactor (a closed system).

The applicability of this technique follows directly
from the fact that kinetic data are time series of
observed values (key component concentrations or
quantities proportional to them). In the last few
decades, processing of time series has attracted much
attention as a tool for investigation of complicated
dynamic systems [5]. We will consider only series of
kinetic measurements taken at regular time intervals.

Table 1. Mapping formulas for kinetically simple reactions

In most cases, processing kinetic data reduces to
constructing a probable kinetic model followed by
checking this model against experimental data. A
kinetic model itself is nothing but a theoretically sub-
stantiated ordinary differential equation relating the
reaction rate to the concentrations of key components.
It is well known that any ordinary differential equation
allows construction of a mapping equation relating the
(i + Dth term of the series of observed values (mea-
sured while giving equal increments to the independent
variable) to some function of a sequence of the preced-
ing terms [4]. In the simplest case, a term of the series
is a function of its antecedent:

X =f(x) i=0,1,2,.... )

The method of deriving such mapping formulas for
differential equations integrable in quadratures is sim-
ple and can be illustrated by applying it to a
(pseudo)first-order reaction (Table 1, row 1). For mea-
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Table 2. Mapping formulas for complicated kinetic systems
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Reaction Rate equation Mapping formula Notes
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surements separated by regular time intervals AT, the
integral equation for the time point nAtT will appear as

n=20,1273... 2)

Hence, we readily obtain the mapping formula

¢, = coexp(—knAt)

n

Cphi1 = Coexp(—k(n+1)A7) 3)

= coexp(—knAt)exp(—kAT) = c,exp(—kAT),
or
Cn+1 = CpCONS, 4)

since kAT is constant.

It follows from Eq. (4) that this mapping is linear,
and the slope of the correlation line defines a unique
reaction rate constant:

_ln const
AT

This type of mapping formula can readily be
obtained for all kinetically simple (Table 1) and some
complex systems. In Table 2, we present mapping for-
mulas for catalytic ionic polymerization, Michaelis—
Menten enzyme kinetics, free-radical polymerization
(all in the steady-state approximation for active inter-
mediates), and a sequence of consecutive reactions.
Although the mapping for the consecutive reactions is
two-dimensional, it is still possible to find an adequate
mapping function.

Clearly, all these mappings allow generalization in
the following form:

f(x,)g(k, At) = f(x,)const

S(xpi1) = {f(xn) + g(k, At) = f(x,)+ const, ©®

k = &)

where f(x) is some function of the measured variables
and g(k, A1) is a function of the parameters and of the
measurement step size, both functions being indepen-
dent of step number. The latter function is invariant for
a given array of observations since its value is constant
throughout this array. Invariants can be used in rough
discrimination of kinetic models (see the invariable rate
constant method [2]). Indeed, Eq. (6) implies the fol-
lowing simple relationships:

Sxie) = f(x) = (f(x;) = f(x;_))const,
Sxi) = f(x) = (f(x) = f(xi20),

which allow one to find f{x) ensuring constancy of the
invariant.

Thus, in these kinetic time series, any term is equal
to the preceding term either multiplied by an invariant
or added to an invariant. These relationships are true
even for the ratio of the concentration of the first prod-
uct to the concentration of the original substance in a
system of consecutive reactions. It is also significant
that these mappings are functional; that is, in the space
of observations (which is one-dimensional in the case
considered), there is a function whose values for a
given and the subsequent measurement are interrelated.
By contrast, point mappings like Eq. (1) directly inter-
relate these measurements. We demonstrate in Tables 1
and 2 that relationships like Eq. (1) in explicit form can-
not be derived from mapping formulas even for simple
kinetic systems because of the transcendence of the
mapping functions. Therefore, functional relationships
like Eq. (6) are more general than identity (1) and it can
be assumed that they must be more frequent in time
series.
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It can readily be seen that the mapping formulas
listed in Tables 1 and 2 allow experimental data to be
processed in unconventional ways. For example, the
following linear relationship must be valid for free-rad-
ical polymerization:

M 2 M

In—** = =(R-1)+RIn-". 8
B = o (R=D+Ringz ®)
This equation allows the initiation (initiator decom-
position) rate constant and the effective reaction rate
constant to be estimated from the slope angle and ordi-
nate intercept, respectively (see the expressions for R

and the polymerization constant o [6] in Table 2).

Some interesting specific features of the mapping
method can be illustrated by processing electric con-
ductivity data for reactions between phosphorus oxy-
chloride and alcohols, which were studied by the
stopped-flow method using a loop oscillograph [7, 8].
In the original study, the rate constant of this reaction
was derived from the integral kinetic equation

1 Ao — A
ne—m——— =
Ao — Ao
where A is the electric conductivity of the reaction mix-
ture and the subscripts e and 0 mean measurements at
an infinite time (when the reaction is complete) and at
the instant the reaction is started, respectively. Direct
proportionality between the electric conductivity of the

reaction mixture and the hydrogen chloride concentra-
tion was established in an earlier study [6].

The figure plots data processed using the mapping
formula (2) for three runs at 24.8°C. (The marked dif-
ference between the mappings is due to the fact that
electric conductivities are used instead of concentra-
tions.) Least-squares regression leads to the rate con-
stant array 4.214, 4.300, 4.135 s~! with a one-run vari-
ance of ~2 x 1073. Classical processing of the same data
leads to the array 4.500, 4.232, 4.044 s7! with a variance
of about 3 x 10, Clearly, as determined from the
results of three runs, the reproducibility variance of the
rate constant is smaller in the former case than in the

—kT, ©))
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Intensity of an oscillographic signal versus the intensity of
the preceding signal for three ethanol-phosphorus oxychlo-
ride reaction runs at 24.8°C [7].

latter. This is undoubtedly due to the fact that taking the
logarithm of the decreasing difference between oscillo-
graphic signal intensities adds to the error. Therefore, in
this case, the mapping method is somewhat superior to
the conventional integral method from the standpoint of
data reliability.

This inference is likely to be true in other cases as
well, as is suggested by the results of data processing
for an irreversible mixed-second-order reaction
(Table 3). Error analysis was carried out for the follow-
ing model: initial concentration of the key substance
(A), 2 mol/l; excess coefficient of substance B, B = 1.5;
rate constant, k=2 x 10~ (mol/l)™' s7!; time step size,
180 s; and ultimate conversion, 0.987. The random
error was simulated by superimposing, on the current

Table 3. Results of data processing for a second-order irreversible reaction

- kx 103, 1mol™ s7! Correlation factors
Processing metho 2 .
£ sh=1x10 sh=1x1073 5% =1x1072 at sy =1x107
Mapping 2.000 1.999 2.001 0.996
2.000 1.997 2.004 0.995
2.000 1.998 2.002 0.997
Classical method 2.002 1.991 1.907 0.978
2.000 2.011 1.998 0.996
1.998 1.983 1.996 0.975
Middle-invariant method 2.003 1.983 1.785 1.000
2.003 1.982 1.783 1.000
1.999 1.972 1.444 1.000

2 . . .
Note: s, is the variance of the concentration of the key reactant A.
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concentration of A derived from the kinetic equation, a
normally distributed random variable with a zero
expectation and three different values of variance, spe-
cifically, 1 x 10#, 1 x 1073, and 1 x 1072 Thus, we
assumed that the absolute error in the concentration of
the key component is constant (as is usually the case in
kinetic measurements). It is clear from the data pre-
sented in Table 3 that the mapping method affords more
reliable results than the classical integral method not
only for small and intermediate variances but also for
an unreasonably large variance of 1 X 102, As men-
tioned above, this is due to the fact that taking the log-
arithm of small differences increases the error. Since
logarithms are frequent in integral kinetic equations,
arising from the integration of fractional rational func-
tions typical of kinetics, the inference as to the reliabil-
ity of the mapping method is quite general. Note that
even the middle-invariant (invariable rate constant [2])
method is reliable only for fairly accurate measure-
ments.

Another specific feature of the mapping method is
that it is unnecessary to know the initial conditions (the
initial concentration of the key reactant), which cannot
be reliably determined in some cases, e.g., for fast reac-
tions. This feature is common to most of the kinetic sys-
tems considered here (Tables 1, 2). This circumstance
makes it easier to deduce possible kinetic models from
experimental data.

Thus, mapping formulas can be obtained for typical
simple kinetic systems and can be used to derive
parameters of kinetic equations (partial orders of reac-
tion, rate constants, etc.) from experimental data.

In conclusion, note the following significant points.
First, rather simple mapping formulas can be obtained
only for differential kinetic equations integrable
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through separation of variables. In more general cases,
including fractional-order reactions (Table 1, row 2),
the constant R appears to depend on the formal mea-
surement number. Nevertheless, this is not a serious
obstacle that can limit the applicability of the mapping
method. The second noteworthy point is that the main
applicability condition for the above mapping formulas
is the equality of time intervals between measurements,
Ar. Therefore, the use of these formulas is limited to the
case of continuous recording of key reactant concentra-
tions (or proportional quantities) and to measurements
taken at regular time intervals.
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